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Abstract

Most of the approaches dedicated to automatic morphometry rely on a point-
by-point strategy based on warping each brain towards a reference coordinate sys-
tem. The coordinate system is three dimensional for the comparison of the local
densities of grey and white matter (voxel-based morphometry), or two dimensional
(spherical) for the comparison of cortical thickness. A more intuitive alternative
approach is based on Regions of Interest defined either maually or authomatically.
The volumes and shapes of these ROIs (for insatnce sulci and gyri) can be com-
pared across subjects. This talk will give an overview of these different strategies.

1 Introduction
Advances in neuroimaging have led to an increasing recognition that certain neuro-
anatomical structures may be preferentially modified by particular cognitive skills or
diseases. For cognitive studies, this point of view relies on the supposition that special-
ized or preferred behaviour is associated with a commensurately greater allocation of
neural circuitry in corresponding brain centers. For neurodegenerative disorders, the
differential patterns of atrophy is supposed to reflect the clinical phenomenology [1].
This recognition has mainly resulted from the recent design of automated morphomet-
ric methods, which have empowered large-scale population studies [44, 2]. Therefore,
brain morphometry is now one of the basic brain mapping tools at the same level as the
various functional imaging modalities.

For most of the approaches, the automatic analysis relies on warping each brain to-
wards a reference coordinate system, which plays the same role as the latitude and lon-
gitude system for localization of points on the Earth’s surface [41, 19, 20, 46, 18, 28]
(cf Fig 1, 2 and 3). The coordinate system is three dimensional for the comparison
of the local densities of grey and white matter (voxel-based morphometry, VBM [2]
“http://www.fil.ion.ucl.ac.uk/spm/”), or two dimensional (spherical) for the compar-
ison of cortical thickness [17, 28] (“http://surfer.nmr.mgh.harvard.edu/”). Each new
brain is endowed with one of these coordinate systems through iconic spatial nor-
malization, namely a deformation matching as far as possible the new brain macro-
scopic anatomy as revealed by magnetic resonance imaging (MRI) with a template
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Figure 1: The 3D proportional coordinate system, based on a few landmarks, was introduced
for neurosurgical purpose [41]. The modern approach is based on linear or nonlinear registration
with a template made up of the average of a large number of brains [13, 20]. The most common
template is based on 305 brains manually aligned in the Montreal Neurological Institute [16].

anatomy [13, 20, 18, 25]. The simplest approaches rely on affine transformations only,
while modern registration techniques can now provide complex warpings relying on a
large number of degrees of freedom, that are supposed to improve the normalization
[22, 38, 7]. Nonlinear warping can be the basis for deformation-based morphome-
try, a sibling of the tissue density morphometries which is also coordinate-oriented
[9, 36, 37].

The iconic spatial normalization paradigm, originally introduced to overcome the
poor statistics of positron emission tomography (PET) data [19], has made a tremen-
dous impact on brain mapping strategies [31]. The coordinate-based approach, indeed,
is very versatile since any dataset can be compared simply on a point by point basis.
A disturbing fact, however, is that a number of different normalization algorithms are
used throughout the world, each one potentially leading to different normalization re-
sults [14, 24]. Even SPM software proposes a lot of alternatives related to the size
of the warping function basis or to the choice of the template [20]. This observation
means that what is called spatial normalization is far to be clear simply because nobody
really knows the gold standard of brain matching. Furthermore, nobody knows today
to which extent matching two different brains with a continuous deformation makes
sense from a neuroscience point of view.

The part of the brain leading to the main difficulties is the cortex, because the large
variability of the folding patterns prevents the warping from attempting a perfect gyral
matching across subjects [32, 4, 24]. Therefore, it seems rather difficult to perform
reliable coordinate-based morphometric studies without either spatially blurring the
data [2] or involving hundreds of subjects [47, 21]. A number of teams try to over-
come current difficulties via more sophisticated iconic normalization procedures [43].
A significant improvement, for instance, consists in warping inflated cortical surfaces
according to depth or curvature features, which simplifies the matching of the major
sulci [18]. In our opinion, however, without a better understanding of the inter-in-
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Figure 2: A rapid overview of VBM approach (from J. Ashburner [2]): each brain is spatially
normalized first. Prior knowledge is then used to drive classification of the normalized image
into three types of tissues. A correction is applied to account for modification of the amount
of tissues induced by nonlinear warping (modulation). The resulting images are smoothed and
compared across subjects on a voxel by voxel basis.

dividual variability of the cortical folding patterns, the risk is the drift toward pure
morphing techniques without consistent architectural justification. Spatial normaliza-
tion, indeed, should try to match as far as possible the architectural parcellations of
the cortical sheet. Unfortunately, while some major sulci are usually considered as
good indicators of architectonic or functional transitions, few people postulate that this
property can be extrapolated to all cortical folds [48, 34]. Anyway, the approaches im-
posing some sulcus-based constraints in the warping procedures [42, 11, 8, 23] seem
more reasonable than blind morphing procedures only driven by image grey levels or
surface curvature, even if some progress has to be made with regard to the automatic
identification and the choice of the sulci to be matched.

An alternative to the coordinate-based point of view is the classical ROI-based
strategy. The structures of interest are segmented manually or automatically and vari-
ous morphometric parameters related to their shapes are compared across subject. For
the cortex, this alternative can rely on pattern recognition systems identifying the sulci
or the gyri [35, 6, 30, 29]. It should be noted that this kind of ROI-based strategy is
data-driven. Therefore, the ROIs actually fit individual anatomy. In contrast, the ROI-
based strategy which warps a segmentation of the template brain [12, 10] suffers from
the weakness of iconic normalization with regard to sulco/gyral patterns.

A first key point of the ROI-based strategy is that the combination of measurements
gathering a subset of voxels increases the statistical power. This combination of mea-
surements can simply rely on some averaging process, for instance through the com-
putation of the mean thickness in a surface patch; but the ROI definition leads also to
the emergence of new morphometric opportunities provided by various ROI-shape fea-
tures. For instance the number and the types of interruptions of the major sulci, or the
fact that two major sulci are connected or not, have never been correlated to cognitive
features. The burried gyri leading to these interruptions [5], however, may be deeply
correlated with the functional organization. This has been shown in the case of Broca’s
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Figure 3: Cortical thickness analysis [18, 17, 28] is a new morphometric approach that can be
viewed as a 2D analogue to VBM. Cortical thickness is compared across subjects on a point by
point basis after alignment of the cortical surfaces with a spherical coordinate system.

“pli de passage moyen”, namely the gyrus burried in the central sulcus [33, 50, 3].
Some other interesting morphometric features are the depth and the surface of a given
sulcus, which may give some clues about the development of the surrounding func-
tional areas, because of the tensegrity principle: the idea that the folding reaches its
final pattern via stabilization of the sum of tensions and compressions stemming from
the different parts of the cortex (axone bundles, cortical mantle, etc...) [34, 45]. Hence,
a second key point of the object-based strategy is the possibility to compare the vari-
ous instances of the same anatomical entity without requiring a point-to-point warping,
which may not exist. We do not claim such an approach provides miraculous solutions
to the difficulties induced by the variability of the cortex folding patterns, but only a
new window to compare the cortex shapes. The relevance of a sulcus-based parcella-
tion system is supposed to stem from the complex links with the cortex architectony
mentioned above.

The increase in statistical power provided by the classical ROI-based strategy leads
to a loss of localization power. This is good reason why this approach should be asso-
ciated with some more sophisticated local analysis. For instance, each sulcus can be
endowed with a 2D coordinate system in order to perform either local cortical thickness
analysis or statistical shape modeling [27, 15, 40]. This structure-based local coordi-
nate system strategy, unfortunately, does not deal nicely with the topological variability
of the sulci. Therefore, it may be easier to apply the local coordinate systems to the
gyri, which are usually non interrupted.

Considering the complexity of adapting a coordinate system to each cortical struc-
ture, an attractive alternative may consist in mixing warping and sulcus recognition in
a hierarchical manner. A first affine registration may be used to constraint the recog-
nition of the major sulci, following the strategy of our artificial neuroanatomist [35].
Then a non linear warping aligning these major sulci would result in a refined normal-
ization [8], this new coordinate system being used to constraint the recognition of more
variable sulci. This process could be iterated as long as new sulcal landmarks can be
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Figure 4: Top: Each sulcus (here the central sulcus) is extracted in each hemisphere as a
skeleton subset. In this figure, yellow voxels denote the main part of this subset, while cyan
voxels correspond to the junction with the brain hull. This set of voxels is then meshed in
order to have access to smooth 3D rendering of the sulcus shape (red). Several morphometric
measurements are inferred from the two types of representations. Bottom: 58 sulcus have been
identified in each of 142 brains. For each sulcus, an index of asymmetry is computed for each
of the morphometric measurement. These indices are compared across left-handed and right-
handed populations. A few sulci lead to handedness correlated indices. Their instances in one
brain chosen randomly are highlighted in this figure, with the list of correlated indices.

identified. It may also be used to guide the inference of new landmarks, either among
the branches of the sulci or using another source of information like diffusion-weighted
data. Diffusion imaging, indeed, may deeply modify the problem of inter-subject align-
ment in a near future. This modality may provide new insight into the architectural
subdivisions of the brain [26] which should be matched by iconic normalization. This
has been shown for instance for the thalamus [49]. It is bound to happen for the cortex,
because fiber bundles will lead to architectural parcellations of the cortical surface rel-
atively to the connectivity patterns [39]. Finally, a new morphometry dedicated to the
shapes of the bundles will have to be developed.
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